3D printing method may improve micro energy storage
en-GBde-DEes-ESfr-FR

3D printing method may improve micro energy storage


One key to making portable devices more compact and energy efficient lies in the precise nanoscale form of energy-storing capacitors. Researchers in Sweden report they've cracked the challenge with a unique 3D printing method.

Researchers at KTH Royal Institute of Technology demonstrated a 3D printing method for fabricating glass micro-supercapacitors (MSCs) that reduces the complexity and time required to form the intricate nanoscale features MSCs need.

The advance could potentially lead to more compact and energy-efficient portable devices, including self-sustaining sensors, wearable devices and other Internet of Things applications, says Frank Niklaus, professor of micro- and nanosystems at KTH. Their study was published in ACS Nano.

The new method addresses two key challenges to fabricating such devices. A micro-supercapacitor's performance is largely determined by its electrodes, which store and conduct electrical energy. So they need more electrode surface area, and they need nanoscale channels to facilitate rapid ion transport. Po-Han Huang, who was lead author of the study at KTH, says the new research addresses both challenges with through ultrashort laser pulse 3D printing technology.

The researchers discovered that ultrashort laser pulses can induce two simultaneous reactions in hydrogen silsesquioxane (HSQ), a glass-like precursor material. One reaction results in the formation of self-organized nanoplates, while the second converts the precursor into silicon-rich glass, which is the foundation of the 3D printing process. This enables the fast and precise fabrication of electrodes with plenty of open channels, which maximizes surface area and speeds up ion transport.

The researchers demonstrated the approach by 3D-printing micro-supercapacitors that performed well even when charged and discharged very quickly.

"Our findings represent a significant leap forward in microfabrication, with broad implications for the development of high-performance energy storage devices," Huang says. "Beyond MSCs, our approach has exciting potential applications in fields such as optical communication, nanoelectromechanical sensors and 5D optical data storage."

The implications are also significant for technologies presently in common use. Supercapacitors of the non-micro type are already collecting energy generated during braking, stabilizing power supply in consumer electronics, and optimizing energy capture in renewable energy, Niklaus says. "Micro-supercapacitors have the potential to make these applications more compact and efficient."

3D Printing of Hierarchical Structures Made of Inorganic Silicon-Rich Glass Featuring Self-Forming Nanogratings
Po-Han Huang, Shiqian Chen, Oliver Hartwig, David E. Marschner, Georg S. Duesberg, Göran Stemme, Jiantong Li, Kristinn B. Gylfason, and Frank Niklaus
ACS Nano Article ASAP
DOI: 10.1021/acsnano.4c09339
Archivos adjuntos
  • A close up of 3D-printed Si-rich glass micro-supercapacitors (MSCs) on silicon substrates, magnified by 4720 times.
Regions: Europe, Sweden
Keywords: Applied science, Engineering, Nanotechnology, Business, Electronic hardware & software

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement