New Anti-Cancer Agent Works Without Oxygen
en-GBde-DEes-ESfr-FR

New Anti-Cancer Agent Works Without Oxygen


Tumors often contain areas of oxygen-deficient tissue that frequently withstand conventional therapies. This is because the drugs applied in tumors require oxygen to be effective. An international research team has developed a novel mechanism of action that works without oxygen: polymeric incorporated nanocatalysts target the tumor tissue selectively and switch off the glutathione that the cells need to survive. The group headed by Dr. Johannes Karges from the Faculty of Chemistry and Biochemistry at Ruhr University Bochum, Germany, published their findings in the journal Nature Communications on October 31, 2024.

Why tumors shrink but don’t disappear

“As tumors grow very quickly, consume a lot of oxygen and their vascular growth can’t necessarily keep pace, they often contain areas that are poorly supplied with oxygen,” explains Johannes Karges. These areas, often in the center of the tumor, frequently survive treatment with conventional drugs, so that the tumor initially shrinks but doesn’t disappear completely. This is because the therapeutic agents require oxygen to be effective.

The mechanism of action developed by Karges’ team works without oxygen. “It’s a catalyst based on the element ruthenium, which oxidizes the naturally present glutathione in the cancer cells and switches it off,” explains Karges. Glutathione is essential for the survival of cells and protects them from a wide range of different factors. If it ceases to be effective, the cell deteriorates.

Compound accumulates in tumor tissue

All cells of the body need and contain glutathione. However, the catalyst has a selective effect on cancer cells as it is packaged in polymeric nanoparticles that accumulate specifically in the tumor tissue. Experiments on cancer cells and on mice with human tumors, that were considered incurable, proved successful. “These are encouraging results that need to be confirmed in further studies,” concludes Johannes Karges. “Still, there’s a lot of research work to be done before it can be used in humans.”

Hanchen Zhang, et al. Johannes Karges: Tumor-Targeted Glutathione Oxidation Catalysis with Ruthenium Nanoreactors against Hypoxic Osteosarcoma, in: Nature Communications, 2024, DOI: 10.1038/s41467-024-53646-y, https://doi.org/10.1038/s41467-024-53646-y
Archivos adjuntos
  • The team led by Johannes Karges has developed a compound that fights cancer cells without the presence of oxygen. © RUB, MarquardThe image may only be used in the context of the press release "New Anti-Cancer Agent Works Without Oxygen" published by RUB on October, 31, 2024.
Regions: Europe, Germany
Keywords: Health, Medical, Science, Life Sciences, Chemistry

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement