SARS-CoV-2 “steals” our proteins to protect itself from the immune system
en-GBde-DEes-ESfr-FR

SARS-CoV-2 “steals” our proteins to protect itself from the immune system


Researchers at the Medical University of Vienna and the Medical University of Innsbruck discovered that SARS-CoV-2 hijacks three important host proteins that dampen the activity of the complement system, a key component of early antiviral immunity. This significantly impairs viral clearance which may affect the course of both acute COVID-19 infections and post-COVID-19 sequelae. The study was recently published in the journal “Emerging Microbes & Infections”.

An early and effective immune response is crucial for resolving viral infections and preventing post-infectious complications. The complement system, a pivotal element of antiviral immunity, is a cascade of proteins found in the bloodstream and at mucosal sites, such as the respiratory tract. Activated through three different pathways, complement facilitates the clearance of virus particles by directly inducing their destruction (lysis). To prevent bystander damage to host cells, complement is rapidly inactivated by a set of host molecules referred to as complement regulatory proteins. The new study led by Anna Ohradanova-Repic and colleagues from the Center for Pathophysiology, Infectiology and Immunology at the Medical University of Vienna in collaboration with the team of Heribert Stoiber from the Institute of Virology at the Medical University of Innsbruck shows that SARS-CoV-2 hijacks three of these regulatory proteins, CD55, CD59 and Factor H, and thereby successfully shields itself from complement-mediated lysis.

Hijacking host proteins for effective complement resistance
By propagating SARS-CoV-2 in human cells the researchers discovered that the virus particles acquire the cellular proteins CD55 and CD59. Further experiments showed that SARS-CoV-2 also binds to Factor H, another complement regulatory protein that is primarily found in the bloodstream. Confronting the virus particles with active complement revealed that they are partially resistant to complement-mediated lysis. By removing CD55, CD59 and Factor H from the virus surface or inhibiting their biological functions, the researchers could successfully restore complement-mediated clearance of SARS-CoV-2. “Through hijacking these three proteins, SARS-CoV-2 can evade all three complement pathways, resulting in reduced or delayed viral clearance by the infected host,” Anna Ohradanova-Repic, the leader of the study explains. Because complement is intricately linked with other components of the immune system, this not only affects virus elimination but can also cause significant inflammation, a core feature of both severe COVID-19 and Long COVID. “Uncovering immune evasion mechanisms that allow the virus to linger within the host for longer, deepen our understanding of the acute and long-term impacts of SARS-CoV-2 infection,” says first author Laura Gebetsberger.
Emerging Microbes & Infections
SARS-CoV-2 hijacks host CD55, CD59 and Factor H to impair antibody-dependent complement-mediated lysis
Laura Gebetsberger, Zahra Malekshahi, Aron Teutsch, Gabor Tajti, Frédéric Fontaine, Nara Marella, André Mueller, Lena Prantl, Hannes Stockinger, Heribert Stoiber and Anna Ohradanova-Repic
DOI: 10.1080/22221751.2024.2417868 https://www.tandfonline.com/doi/full/10.1080/22221751.2024.2417868
The study was funded by the Austrian Science Fund (FWF, P 34253-B).
Archivos adjuntos
  • SARS-CoV-2 “steals” our proteins to protect itself from the immune system (Copyright (c) 2020 CrispyPork/Shutterstock).
Regions: Europe, Austria
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement