New avenues in quantum research: supramolecular qubit candidates detected
en-GBde-DEes-ESfr-FR

New avenues in quantum research: supramolecular qubit candidates detected


The Franco-German research team, including members from the University of Freiburg, shows that supramolecular chemistry enables efficient spin communication through hydrogen bonds.

Qubits are the basic building blocks of information processing in quantum technology. An important research question is what material they will actually consist of in technical applications. Molecular spin qubits are considered promising qubit candidates for molecular spintronics, in particular for quantum sensing. The materials studied here can be stimulated by light; this creates a second spin centre and, subsequently, a light-induced quartet state. Until now, research has assumed that the interaction between two spin centres can only be strong enough for successful quartet formation if the centres are covalently linked. Due to the high effort required to synthesise covalently bonded networks of such systems, their use in application-related developments in the field of quantum technology is severely limited.

Researchers at the Institute of Physical Chemistry at the University of Freiburg and the Institut Charles Sadron at the University of Strasbourg have now been able to show for the first time that non-covalent bonds can allow for efficient spin communication. To do this, the scientists used a model system consisting of a perylenediimide chromophore and a nitroxide radical that self-assemble into functional units in solution by means of hydrogen bonds. The key advantage: the formation of an ordered network of spin qubits could now be achieved using supramolecular approaches, which would enable the testing of new molecule combinations and system scalability without major synthetic effort.

“The results illustrate the enormous potential of supramolecular chemistry for the development of novel materials in quantum research,” says Sabine Richert, who conducts research at the Institute of Physical Chemistry at the University of Freiburg, where she heads an Emmy Noether junior research group. “It offers innovative ways to research, scale and optimise these systems. The findings are therefore an important step towards developing new components for molecular spintronics.”

Original publication: https://doi.org/10.1038/s41557-024-01716-5

Khariushin, I.V., Thielert, P., Zöllner, E. et al. Supramolecular dyads as photogenerated qubit candidates. Nat. Chem. (2025). https://doi.org/10.1038/s41557-024-01716-5
Archivos adjuntos
  • The Franco-German research team, including members from the University of Freiburg, shows that supramolecular chemistry enables efficient spin communication through hydrogen bonds.Image: Private
Regions: Europe, Germany, France
Keywords: Science, Physics

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement