Tire-Wear Particles Pose Health Risks to Aquatic Organisms
en-GBde-DEes-ESfr-FR

Tire-Wear Particles Pose Health Risks to Aquatic Organisms

25/10/2024 TranSpread

In a study published in Environmental Chemistry and Ecotoxicology, researchers from Hangzhou Normal University uncovered the adverse health effects of tire-wear particles (TWPs) on aquatic organisms. The study, led by Zhiquan Liu, focused on the hepatotoxicity of TWP leachates, revealing significant impacts on the gut-liver axis and oxidative stress levels in test organisms.

“TWPs, primarily produced through tire-road friction, are released into the environment in vast quantities,” says Liu. “Each year, approximately 6.1 million tons of TWPs are estimated to enter aquatic ecosystems, posing a significant threat to biodiversity.”

This prompted the researchers to investigate the effects of TWP leachates on black-spotted frogs (Pelophylax nigromaculatus), a highly susceptible amphibian species.

“We found that TWP leachates induced hepatic oxidative stress, inflammation and histopathology changes in the frogs. Specifically, increased levels of reactive oxygen species (ROS) and activation of signaling pathways closely related to immunity were observed,” shares Liu.

These changes were accompanied by disruptions in the gut microbiota, with a notable increase in Proteobacteria, a major source of gut-derived endotoxic lipopolysaccharide (LPS). Such disruptions in the gut-liver axis and oxidative stress levels can lead to long-term health issues for affected organisms.

The team also found that zinc, a trace metal commonly found in TWP leachates, accumulated in the intestine, liver and kidney of the test frogs, further confirming the absorption and bioaccumulation of TWP leachates by aquatic organisms.

###

References

DOI

10.1016/j.enceco.2024.08.004

Original Source URL

https://doi.org/10.1016/j.enceco.2024.08.004

Funding information

This study was funded by the State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants (SEPKL-EHIAEC-202201), Natural Science Foundation of Zhejiang Province of China (LQ22C030003), the National Natural Science Foundation of China (42207323), “Pioneer” and “Leading Goose” R and D Program of Zhejiang (2023C03130).

Journal

Environmental Chemistry and Ecotoxicology

Paper title: Tire-wear particle leachate at environmentally relevant concentrations exert a hepatotoxic impact on the black-spotted frog by disrupting the gut–liver axis
Fichiers joints
  • Graphic abstract.
25/10/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Environment - science, Agriculture & fishing

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Témoignages

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Nous travaillons en étroite collaboration avec...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement