Study identifies subtypes of fibroblasts in skin cancer
en-GBde-DEes-ESfr-FR

Study identifies subtypes of fibroblasts in skin cancer


A study at MedUni Vienna's Department of Dermatology provides insights into the diversity of cancer-associated fibroblasts in white and black skin cancer and describes their different immunomodulatory roles in the tumor environment. The results are relevant for the development of novel skin cancer therapies, particularly in the field of immunotherapy. The study was recently published in the journal “Nature Communications”.

Fibroblasts are specialized cells in connective tissues that play an important role in wound healing and tissue repair. They produce and organize the so-called extracellular matrix, a network of proteins such as collagen, which makes the tissue stable and elastic, but also perform many other tasks. Cancer-associated fibroblasts (CAFs) are an important component in solid tumors. They play a decisive role in cancer development and have a significant influence on the success of therapy. A study at MedUni Vienna's Department of Dermatology was the first to investigate the previously unknown diversity of CAFs in various types of skin cancer - basal cell carcinoma, squamous cell carcinoma and melanoma - at molecular and spatial level in single-cell analysis.

Through a comprehensive study of fibroblasts in the tumor environment, including their interaction with other cells such as epithelial, mesenchymal and immune cells, three clearly distinguishable subtypes of CAFs (cancer-associated fibroblasts) were identified: myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs) and immunomodulatory CAFs (iCAFs). It is particularly striking that the distribution of these subtypes changes with increasing aggressive of tumors.

Distinct subtypes with different roles in the tumor microenvironment
Two of these subtypes have the ability to influence the immune system, but in different ways. The mCAFs produce more matrix proteins and are often found at the tumor-stroma border in less aggressive tumors. They surround the tumor nests and may prevent immune cells such as T cells from invading the tumor. In contrast, iCAFs are increasingly found in aggressive forms of skin cancer (invasive basal cell carcinoma and high-grade melanoma). These cells produce large amounts of signaling factors (cytokines and chemokines) that play an important role in attracting and activating immune cells.

“Interestingly, it was shown that healthy fibroblasts that are exposed to the secretome of skin cancer cells in the laboratory develop a similar behavior to iCAFs and are capable of activating naive T cells,” says study leader Beate Lichtenberger from MedUni Vienna's Department of Dermatology, describing the results, ”this shows that it may be possible to target these subtypes.”

The results of this study are relevant for the development of novel skin cancer therapies, particularly in the field of immunotherapy. Beate Lichtenberger on the significance of the findings: “The targeted treatment of the various CAF subtypes, in particular the immunomodulatory iCAFs, could significantly improve the success of therapy by strengthening the immune response and limiting the spread of tumor cells. These new findings could provide the basis for innovative therapeutic approaches and make skin cancer treatments significantly more effective.”
Nature Communications
Cancer associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy
Agnes Forsthuber, Bertram Aschenbrenner, Ana Korosec, Tina Jacob, Karl Annusver, Natalia Krajic, Daria Kholodniuk, Sophie Frech, Shaohua Zhu, Kim Purkhauser, Katharina Lipp, Franziska Werner, Vy Nguyen, Johannes Griss, Wolfgang Bauer, Ana Soler Cardona, Benedikt Weber, Wolfgang Weninger, Bernhard Gesslbauer, Clement Staud, Jakob Nedomansky, Christine Radtke, Stephan N. Wagner, Peter Petzelbauer, Maria Kasper, Beate M. Lichtenberger
https://doi.org/10.1038/s41467-024-53908-9
Fichiers joints
  • Cancer-associated fibroblast subtypes modulate the tumor immune microenvironment and are associated with the aggressiveness of skin cancer (Copyright (c) 2024 Volha_R/Shutterstock).
Regions: Europe, Austria
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Témoignages

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Nous travaillons en étroite collaboration avec...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement