Nanofluidic devices redefining matter manipulation at an unprecedented level
en-GBde-DEes-ESfr-FR

Nanofluidic devices redefining matter manipulation at an unprecedented level

11/12/2024 Frontiers Journals

One of the great ambitions in the scientific world is to use tiny objects—such as molecules, viruses, and nanoparticles—as building blocks to construct essential macromolecules and materials, much like constructing intricate designs with LEGO bricks. However, achieving this requires overcoming significant challenges. Molecules in liquid environments move randomly and at extraordinary speeds—approximately many times faster than Usain Bolt at peak velocity—making precise manipulation extraordinarily challenging.
To address these challenges, nanofluidic devices have emerged as a groundbreaking innovation. These advanced tools are designed with ultra-narrow channels, comparable in size to individual nanoscale objects, and leverage nanofluidic processes—such as trapping mechanisms—to suppress random motion and enable precise manipulation. This allows researchers to transport and control individual nanoscale objects, ranging from viruses to DNA and single small molecules, with extraordinary precision. By offering an unprecedented level of control, nanofluidic devices overcome existing limitations in nanoscale handling, paving the way for transformative advancements in science, engineering, and industry.
This comprehensive work provides a panoramic view of the field’s advancements, future challenges, and transformative potential. The article highlights the core technologies driving this emerging field, including nanofluidic processing, functional integration, and precise fluidic control. By bridging diverse disciplines through innovative nanofluidic methodologies, the authors have laid a foundation for practical applications that extend well beyond current capabilities.
The researchers address critical challenges, such as the precise manipulation of molecules in solution and the seamless integration of nanofluidic devices with complementary technologies, including optical and magnetic forces. These future innovations will pave the way for molecular robotics. The potential fusion of these technologies with data science and artificial intelligence could drive a paradigm shift, revolutionizing fields such as chemistry, biology, chemical engineering, materials science and engineering, and information processing. Furthermore, nanofluidic manipulation also drives faster, energy-efficient systems, fueling advancements in artificial intelligence and quantum computing. These future innovations have the potential to create new industries, shape future technologies, and redefine the landscape of science and engineering.
Fichiers joints
  • Potential of nanofluidic devices for manipulating individual nanometric objects(illustration). Revolutionizing: Nanofluidic devices enable precise manipulation of single DNA, nanoparticles, biomolecules, and small molecules through innovative techniques like processing, trapping, capturing, and manipulating. These breakthroughs open new frontiers in science, engineering, and industry.
11/12/2024 Frontiers Journals
Regions: Asia, China
Keywords: Applied science, Nanotechnology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Témoignages

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Nous travaillons en étroite collaboration avec...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement